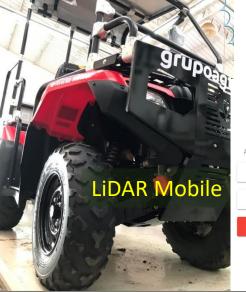


Programa Cooperativo em Tecnologias LiDAR

Reunião Aberta – 20/Ago/2022


- desenvolvimento de PoC's (proof of concept)
- processamento de dados LiDAR
- migração para o uso operacional do LiDAR
- reuniões técnicas e workshops ProLiDAR

Modelagem de fuste

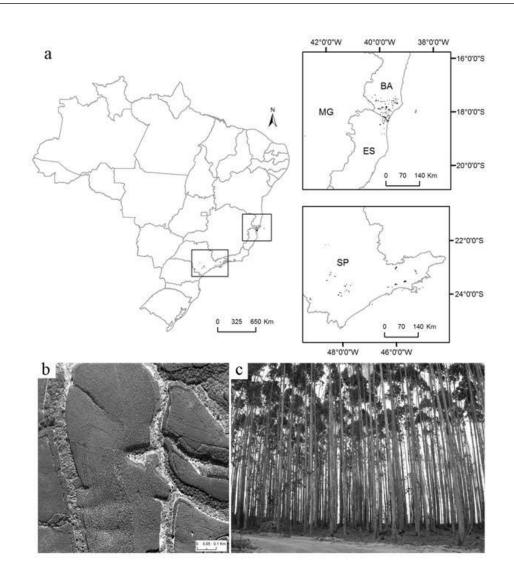
SimpleForest produz os chamados modelos de estrutura quantitativa (QSMs) a partir de nuvens de pontos. Um QSM é um modelo de árvore construído com cilindros ordenados topológicos.

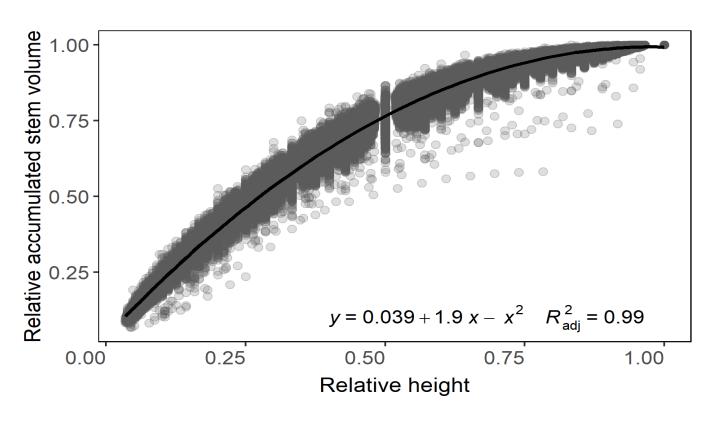
Evoluindo de área basal para torete basal

- Novas métricas podem ser geradas a partir de técnicas há muito esquecidas
- Johan Hossfeld, Engenheiro florestal alemão responsável por vários avanços no século 19 (Fernow, 1907*)
- Método Hossfeldt para predição do volume

$$V = 0.75 A_{1/3} H_t$$

* Fernow, B.E., 1907. History of Forestry. In Europe, The United States and Other Countries. Univ. ofToronto Press, Toronto.




Tabela 1: Resumo das árvores de eucaliptos cubadas por região e por grupos de idade e rotação. Base de dados composta por 6.130 árvores

Region			ВА					SP		
Age (year)	n	DBH	sDBH	Ht	sHt	n	DBH	sDBH	Ht	sHt
		(cm)	(cm)	(m)	(m)		(cm)	(cm)	(m)	(m)
3	295	13.0	3.5	18.2	2.9	256	11.9	3.3	17.9	3.1
4	480	14.2	3.9	20.8	3.6	822	13.5	4.0	20.2	3.7
5	784	15.1	4.3	22.5	4.1	863	14.6	4.5	22.5	4.3
6	791	15.5	4.5	24.0	5.0	889	15.9	5.2	24.3	5.3
7	442	16.6	5.1	25.2	5.3	508	16.4	5.5	25.4	5.8
Rotation	n	DBH	sDBH	Ht	sHt	n	DBH	sDBH	Ht	sHt
		(cm)	(cm)	(m)	(m)		(cm)	(cm)	(m)	(m)
1st	2622	15.1	4.4	22.6	4.8	2374	14.9	4.8	22.9	5.1
2 nd										
(coppice)	170	14.8	4.9	22.6	5.6	964	14.4	5.1	21.5	5.2

Perfil do volume acumulado do tronco de árvores de Eucalipto

Evoluindo de área basal para torete basal

Tabela: Equações para predição do volume de entrada única

	Formula	Intercept	β	RMSE	MAE	R_{Adjs}^2	AIC
Volume torete altura relativa	$V = \beta_0 + \beta \left(V_{1/3} \right)$	-0.053	11.776	0.027	0.0007	0.9652	-20771.96
Volume torete altura constante	$V = \beta_0 + \beta(V_c)$	-0.035	7.574068	0.0311	0.00097	0.9604	-20105.73
DAP	$V = \beta_0 + DBH^2$	-0.262	0.04273	0.0456	0.00208	0.9159	-16399.91

Evoluindo de área basal para torete basal

Tabela: Equações para predição do volume de dupla entrada

	Formula	Intercept	β	RMSE	MAE	R_{Adjs}^2	AIC
Área seccional altura relativa	$V = \beta_0 + \beta \left(A_{1/3} H_t \right)$	0.0016	0.741	0.012	0.00014	0.9941	-29477.56
Volume torete altura relativa	$V = \beta_0 + \beta \left(V_{1/3} H_t \right)$	0.0015	0.3709	0.012	0.00014	0.9942	-29594.63
Volume torete altura constante	$V = \beta_0 + \beta(V_c H_t)$	0.0129	0.2397	0.021	0.0004	0.9845	-24700.35
DAP	$V = \beta_0 + \beta(\text{DBH } H_t)$	-0.098	0.001161	0.0248	0.0008	0.9655	-20768.4

Fechamento (16h)

